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I. REVIEW

Last time we:
(1) Described the bijection between morphisms F : X → Y of Riemann surfaces of

degree d branched over B ⊆ Y and monodromy representations ρ : π1(Y \ B, y)→
Sd.

(2) Studied the particular case where Y = P1, in which case the monodromy repre-
sentation ρ can then be described by a collection of permutations. [Review using
whiteboard to draw P1 minus points.]

II. FUNCTION FIELDS

I’m not a fan of the presentation of function fields in Girondo and González-Diez, so
today we’ll be following chapter 8 of Forster’s Lectures On Riemann Surfaces.

II.1. Symmetric functions. Recall that for a Riemann surface X, M(X) is the field of
meromorphic functions on X. An element f ∈ M(X) is a mermorphic function f : X →
C, and we saw that such a function can be viewed as a morphism X → Ĉ.

Given a nonconstant morphism π : Y → X of Riemann surfaces and f ∈ M(X), then

f ◦ π : Y π→ X
f→ Ĉ is a morphism, hence can be viewed as a meromorphic function on

Y. Thus we get a field morphism

π∗ :M(X)→M(Y)
f 7→ f ◦ π .

We often considerM(X) as a subfield ofM(Y) by identifying it with its image π∗(M(X)).
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Example 1. Let Y = X = Ĉ and consider the morphism

π : Ĉ→ Ĉ

z 7→ z3 .

Given a meromorphic function f ∈ M(X), then π∗( f )(z) = f ◦ π(z) = f (z3). Thus the
corresponding extension of function fields is C(z) ⊇ C(z3).

Y = Ĉ C(z)

X = Ĉ C(z3)

π π∗

Remark 2. The associations X 7→ M(X), π 7→ π∗ define a contravariant functor from the
category of Riemann surfaces to the category of fields. We will later see that this is in fact
an equivalence when we restrict the target category to function fields of one variable.

Let X and Y be Riemann surfaces and π : Y → X be an unramified covering map
of degree d, and let f ∈ M(Y) be a meromorphic function. Then each point x ∈ X

has an evenly covered open neighborhood U, so π−1(U) =
d⊔

j=1

Vj, and the restrictions

π|Vj : Vj → U are isomorphisms of Riemann surfaces. Let τj : U → Vj be the inverse of
π|Vj , and let

f j := τ∗j f = f ◦ τj ∈ M(U) .

Vj Y f |Vj ∈ M(Vj) M(Y) 3 f

U X f j ∈ M(U) M(X)

πτj π∗

Let T be a variable and define a polynomial inM(U)[T] by
d

∏
j=1

(T − f j) = Tn + c1Tn−1 + · · ·+ cd .

Then the cj are meromorphic functions on U and

cj = (−1)jsj( f1, . . . , fd)

where sj is the jth elementary symmetric functions in d variables. One can show that these
cj are independent of the choice of neighborhood U of x. Thus we can cover X with evenly
covered neighborhoods and glue together the locally defined cj to obtain meromorphic
functions c1, . . . , cd ∈ M(X) on all of X.

One can show that these signed symmetric functions can also be defined when π :
Y → X is a nonconstant morphism of Riemann surfaces (which may have ramification
points). The strategy to prove this is one we’ve seen before: throw out the ramification
values and their preimages to obtain an unramified covering map π|Y∗ : Y∗ → X∗. Since
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this restriction is unramified, then we know that the signed symmetric functions cj of f
exist in this case. Then one argues that these cj can be meromorphically continued to the
ramification values.

II.2. Degree of the function field extension induced by a morphism.

Theorem 3. Suppose X and Y are Riemann surfaces and π : Y → X is a morphism of degree d.
If f ∈ M(Y) and c1, . . . , cd ∈ M(X) are the signed elementary symmetric functions of f , then

f d + (π∗c1) f d−1 + · · ·+ (π∗cd−1) f + π∗cd = 0 . (1)

The monomorphism π∗ :M(X)→M(Y) is an algebraic field extension of degree d.

Proof. We’ll just show that [M(Y) : M(X)] ≤ d; to show equality requires the fact that
the functions on a Riemann surface separate points. We will show that the lefthand side
of (1) is the zero function on Y. Given y ∈ Y, then there exists some k ∈ {1, . . . , d} such
that τk ◦ π(y) = y. Then

( f d + (π∗c1) f d−1 + · · ·+ (π∗cd−1) f + π∗cd)(y) =
d

∏
j=1

( f (y)− π∗ f j(y))

=
d

∏
j=1

( f (y)− f ◦ τj ◦ π(y)) = 0

since one of the factors is

f (y)− f ◦ τk ◦ π(y) = f (y)− f (y) = 0 .

Thus every element f ∈ M(Y) is the root of a polynomial inM(X)[T] of degree at most
d.

Let L = M(Y) and K = π∗M(X). Suppose f0 ∈ M(Y) is an element such that the
degree d0 of its minimal polynomial is maximal. We claim that L = K( f0). Given g ∈ L,
consider the extension K( f0, g). By the Primitive Element Theorem there exists h ∈ L such
that K( f0, g) = K(h). Since d0 is maximal, then [K(h) : K] ≤ d0. On the other hand,

[K(h) : K] = [K( f0, g) : K] = [K( f0, g) : K( f0)][K( f0) : K] ≥ [K( f0) : K] = d0 .

Thus
K( f0, g) = K(h) = K( f0)

so g ∈ K( f0), hence L = K( f0). Thus

[M(Y) :M(X)] = [L : K] = d0 ≤ d .

�

Definition 4. A covering map p : Y → X of topological spaces is Galois or normal if for
every pair of points y0, y1 ∈ Y with p(y0) = p(y1) (i.e., in the same fiber) there exists a
deck transformation σ : Y → Y such that σ(y0) = y1.

Remark 5.
• In other words, the covering is Galois if the group of deck transformations acts

transitively on every fiber. This is analogous to the case of fields. Let f ∈ F[x] be
an irreducible polynomial, and let K = F(α) where α is a root of f . The extension
K/F of fields is Galois iff Aut(K/F) acts transitively on the roots of f .
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• There is an alternative characterization of Galois covering maps using the fun-
damental group. Choose a basepoint y0 ∈ p−1(x0). Then the covering map
p : Y → X induces a group homomorphism p∗ : π1(Y, y0) → π1(X, x0) The
cover p : Y → X is Galois iff p∗(π1(Y, y0)) is a normal subgroup of π1(X, x0).

This is again analogous to the case of fields. Given a Galois extension K/F and
an intermediate field E, so K ⊇ E ⊇ F, let H be the corresponding subgroup of
Gal(K/F). Then E/F is Galois iff H E Gal(K/F).

K 1

E H

F Gal(K/F)

Example 6. Let Y = X = C×, and consider the covering map

p : Y → X

z 7→ z3 .

Then Deck(Y/X) = {idY, σ, σ2}, where

σ : Y → Y
z 7→ ζz ,

where ζ is a primitive third root of unity. Given x0 ∈ X, then

p−1(x0) = {y0, y1, y2} = { 3
√

x0, ζ 3
√

x0, ζ2 3
√

x0}
where yj = ζ j 3

√
x0. Thus we see that Deck(Y/X) acts transitively on p−1(x0): for instance,

σ(y0) = y1, and σ2(y0) = y2. Thus p : Y → X is Galois.

We can extend the notion of Galois to nonconstant morphisms of Riemann surfaces.
Let F : Y → X be a nonconstant morphism of Riemann surfaces, and let R ⊆ X be
its ramification values. Let X∗ = X \ R and Y∗ = Y \ F−1(R). As we have seen, then
F|Y∗ : Y∗ → X∗ is a covering map.

Definition 7. A nonconstant morphism F : Y → X of Riemann surfaces is Galois or normal
if the restricted covering map F|Y∗ : Y∗ → X∗ is Galois.

Theorem 8. Let X be a Riemann surface and suppose that

P(T) = Tn + c1Tn−1 + · · ·+ cn ∈ M(X)[T]

is an irreducible polynomial of degree n. Then there exist a Riemann surface Y, a morphsim
F : Y → X of degree n and a mermorphic function f ∈ M(Y) such that (F∗P)( f ) = 0.

Definition 9. Such a triple (Y, F, f ) is called the algebraic function defined by P(T).

The proof of this result is the machinery of multi-valued functions. Here’s a proof by
example for the case X = A1 with coordinate S. Then the coefficients c1, . . . , cn are simply
rational functions in S. Multiplying P(T) by the least common denominator of c1, . . . , cn,
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we obtain a polynomial Q(S, T) ∈ C[S, T]. Let C be the curve in A2 given by Q(S, T) = 0.
One can show that Q is irreducible, however C may have singular points. One can resolve
these singular points and obtain a smooth curve C̃, which is the desired Riemann surface.

Theorem 10. Let X be a Riemann surface and K :=M(X) be its field of meromorphic functions.
Suppose P(T) ∈ K[T] is an monic, irreducible polynomial of degree d.

(a) Let (Y, π, F) be the algebraic function defined by P(T) and let L :=M(Y). Identifying
K with its image under π∗ : K → L, then L/K is field extension of degree d and L ∼=
K[T]/(P(T)).

(b) Every deck transformation σ ∈ Deck(Y/X) induces an automorphism

σ̂ : L→ L

f 7→ σ · f := f ◦ σ−1

that fixes K, and the map

Deck(Y/X)→ Aut(L/K)
σ 7→ σ̂

is a group homomorphism, and in fact, an isomorphism.
(c) The covering Y → X is Galois if and only if the extension L/K of function fields is Galois.

Proof.
(a) The first statement follows from results above.
(b) To show that the map Deck(Y/X) → Aut(L/K) is an isomorphism requires more

results about deck transformations, but we can at least show it’s a homomorphism.
Given σ, τ ∈ Deck(Y/X) and f ∈ M(Y), then

σ̂ ◦ τ( f ) = (σ ◦ τ) · f = f ◦ (σ ◦ τ)−1 = f ◦ τ−1 ◦ σ−1 = σ̂( f ◦ τ−1)

= σ̂(τ̂( f )) = σ̂ ◦ τ̂( f )

so σ̂ ◦ τ = σ̂ ◦ τ̂.
(c) (Assume we know part (b) is true.) Fix a basepoint x0 ∈ X, and let π−1(x0) =
{y1, . . . , yd}. Then π : Y → X is Galois iff for each j = 1, . . . , d there exists a deck
transoformation σj ∈ Deck(Y/X) such that σj(y1) = yj. (This is glossing over
some details, but they follow from uniqueness of lifts for covering maps.) Thus
π : Y → X is Galois iff # Deck(Y/X) = d. Similarly, L/K is Galois iff # Aut(L/K) =
[L : K] = d. Since Deck(Y/X) ∼= Aut(L/K) by the previous part, then the result
follows.

�

Example 11. Let E : y2 = x3 − x be an elliptic curve and π : E → P1 be the projection
(x, y) 7→ x. Then the corresponding extension of function fields is

E M(E) =
C(x)[y]

(y2 − (x3 − x))

P1 C(x) .

π
π∗
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The deck transformations of π are the identity and the hyperelliptic involution ι : (x, y) 7→
(x,−y), and the corresponding field automorphism is

ι∗ :M(E)→M(E)
f (x, y) 7→ f (x,−y) .

Thus we see that the covering is Galois: given x0 ∈ P1, the points in the fiber π−1 are
simply (x0, y0) and (x0,−y0), where y0 is a solution to y2− (x3

0− x0), and these points are
exchange by the involution ι.

We also see directly that the extension of function fields is Galois, as [M(E) : C(x)] = 2
and Aut(M(E)/C(x)) = {id, ι∗}, so # Aut(M(E)/C(x)) = 2.

Definition 12. A function field in one variable is a finite extension of C(x), the field of
rational functions with coefficients in C.

Proposition 13. There is an equivalence of categories between the category of compact, connected
Riemann surfaces, whose arrows are morphisms of Riemann surfaces, and the category of function
fields in one variable, whose arrows are field monomorphisms.

III. UNIFORMIZATION OF RIEMANN SURFACES

III.1. Universal covers of Riemann surfaces.

Theorem 14. Every simply connected Riemann surface is isomorphic to exactly one of the follow-
ing: (i) P1, (ii) C, or (iii) D.

This means that if X is a Riemann surface, its universal cover X̃ must be one of these
three. Moreover, letting G = Deck(X̃/X), then X ∼= G\X̃, so every Riemann surface can
be expressed as a quotient of either the Riemann sphere, the complex plane, or the unit
disc.

Theorem 15 (Uniformization of compact, connected Riemann surfaces). According to their
universal coverings, compact, connected Riemann surfaces can be classified as follows:

• P1 is the only compact Riemann surface of genus 0.
• Every compact, connected Riemann surface of genus 1 is isomorphic to C/Λ for some full

lattice Λ ≤ C.
• Every compact, connected Riemann surface of genus ≥ 2 is isomorphic to a quotient Γ\H

for some subgroup Γ ≤ PSL2(R) acting freely and properly discontinuously on H.

III.2. PSL2(R) as the group of isometries of hyperbolic space.

Definition 16. The hyperbolic metrix on the upper half-plane H with coordinate z = x + iy
is defined by

|dz|2
(Im(z))2 :=

(dx)2 + (dy)2

y2 .

The notation |dz|2 is used for the Euclidean metric (dx)2 + (dy)2 because it hints at its
transformation property: transforming |dz|2 by a holomorphic map f results in | f ′(z)|2|dz|2.
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